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Abstract. We propose a time-gated-single-pixel-camera as a promising sensor for image-free object detection
for automotive application in adverse weather conditions. By combining the well-known principles of time-
gating and single-pixel detection with neural networks, we aim to ultimately detect objects within the scene
rapidly and robustly with a low-cost sensor. Here, we evaluate the possible data reduction such a system
can provide compared to a conventional time-gated camera.
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1 Introduction

Driver assistance systems need to be robust against a vari-
ety of different environmental conditions, especially bad
weather conditions such as heavy rain, fog or snow, if we
envision them to drive our cars autonomously one day.
Current systems rely on many different sensors, such as
cameras, lidar, radar etc., which produce a significant
amount of data. Nevertheless, the performance in bad
weather conditions is still often poor. One promising sensor
for bad weather conditions is the so-called time-gated
camera [1], which filters ballistic object photons. Recently,
time-gated sensors in the near infrared (NIR) have been
implemented on vehicles by several research groups [2, 3|.
Moreover, gated cameras in the short-wave infrared
(SWIR) waveband are developed, which promise a good
penetration depth in bad weather conditions [4, 5].

Apart from robustness on the hardware side, we also
need to very robustly detect objects in real time, combining
as much different sensor data as possible. Although compu-
tation power seems to be ever increasing, the live readout
and interpretation of different sensor data is still challeng-
ing — even more so with modern evaluation algorithms such
as neural networks. A reduction in data on the recording
side while still maintaining all relevant scene information
is therefore highly commendable. Such a measurement
system can be understood in the framework of compressed
sensing (CS) [6]. One possible implementation for a com-
pressed optical sensor is the single-pixel-camera [7], which
has been proven to reduce the amount of data by a factor
of up to 50 for natural images [7, §].

* Corresponding author: bett@ito.uni-stuttgart.de

In recent years, some pioneering work towards single-
pixel 3D-scene detection was reported in literature. Ren
et al. first proposed the combination of a single-pixel-
camera with time-gating in 2011 [9], whereafter the
principle was further developed [10-12] and better decom-
positions of the CS optimization problem were found [13].
There also exist several studies concerning very low light
conditions [14-16]. Interestingly, in single photon counting
mode, the number of photons per pattern becomes the lim-
iting factor [16]. More recently, neural networks gradually
replace conventional CS reconstruction algorithms, showing
better performance with lower compression ratios [8, 16].
Here, a lower compression ratio means less recorded data-
points. Nevertheless, most of the studies focus on shape
measurements by reconstruction of the 3D data cube.
Mostly, irradiance images and depth maps are recon-
structed out of the single-pixel information with the aim
of increasing the (depth) resolution and/or decreasing
recording time. Although some authors mention the ability
to measure through obscuring media or demonstrate it with
the help of one obscuring layer in front of the objects [11,
14], few work has been carried out with extended obscuring
media. One notable exception is Bashkansky et al., who
report single-pixel measurements of static letter objects
through heavy fog in the lab with impressive compression
below one percent [17]. Moreover, scenes are usually
assumed to be static, which relaxes the constraint on
recording time. Howland et al. have reported a video with
14 Hz frame rate of a pendulum moving in 3D space [15]
and Quero et al. propose a single-pixel sensor for drones
with additional four point indirect time-of-flight sensors
[18]. Albeit they prove that the sensor can cope with very
high background illumination, the indirect time-of-flight
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approach is not suitable to deal with thick extended
media. Bashkansky et al. deal with the problem of a
dynamic medium in the case of a static object by high pass
filtering their data at the cost of reduced reconstruction
quality [17].

In this paper, we investigate the possibility to use a
time-gated-single-pixel-camera for autonomous vehicles in
harsh environmental conditions. Using a sensor in this
setting directly leads to two major problems:

1. Hlumination power: Due to the extended intermediate
medium between illumination/detector and object,
only a very small amount of the illumination power
ever reaches the sensor. In order to overcome the inher-
ent detector noise, pulse energy of the illumination sys-
tem should be high. On the other hand, the overall
power needs to be low enough to respect eye-safety
norms.

2. Rapid scene changes: Driving inherently implies a
highly dynamic environment. Accordingly, high frame
rates of 25 Hz or more are mandatory. Moreover, the
obscuring medium itself is dynamic, such that we have
to deal with additional fluctuations in our single-pixel
measurements.

We believe that a low compression ratio is the key to
solve both problems. If only some few recordings are neces-
sary, we can either measure fast enough to ensure a quasi-
static scene during acquisition or even measure in parallel as
it was briefly mentioned in [15] (we will elaborate more on
this point in Sect. 3.2). Moreover, the overall optical power
we need to feed into the scene will decrease with the com-
pression ratio. Apart from the inherent sparsity of all
images, we envision two more mechanisms to further reduce
the compression ratio when we combine time-gating with a
single-pixel detector. On the one hand, time-gated images
are even sparser than natural images due to the conic illu-
mination and the time-gating rendering most objects in
the scene invisible for any given delay. On the other hand,
a reconstruction of an image is not necessary. Albeit an
image helps humans to assess the scene with one glance,
the machine needs to extract object information only, such
as number and class of objects and their positions, in order
to safely guide the car.

The basic idea of image-free classification, i.e. direct
classification on the single-pixel signal without reconstruc-
tion of an image, was given by Davenport et al. very early
after CS-theory was formulated, but was mostly unnoticed
at the time [19]. Recently, image-free classification picks up
interest again, due to the possibility of using neural network
classifiers on the single-pixel signal [20, 21]. Yang et al. even
proposed a scheme to classify, locate and reconstruct an
image out of the single-pixel signal with one single neural
network [22].

This paper contains our preliminary study on the
possible data compression we can hope to achieve in a
time-gated-single-pixel-camera for autonomous vehicles in
harsh weather conditions. We will demonstrate that a
time-gated-single-pixel-camera is able to robustly detect
objects with a minimum of recorded data, i.e. fast enough

to even cope with adverse weather conditions and highly
dynamic environments.

We will shortly revise the principles of time-gating and a
single-pixel-camera in Section 2 and present some early
reconstruction as well as classification results in Section 3.
Based on the feasible compression ratio found in Section 3.1,
we outline a possible setup and estimate its prowess in
Section 3.2. Section 4 will wrap up the paper with the con-
cluding remarks.

2 Theoretical background

A time-gated camera consists of a pulsed laser and a camera
with a very fast shutter (opening time typically in the
nanosecond range). The camera shutter is triggered such
that it opens only for a very short time after a laser pulse
was sent at a user-defined delay time. The pulse length is
typically much lower than the shutter time or gating time
of the camera. Independent thereof, the gate can be
expressed as the convolution of the detector gate with the
laser pulse:

G(z) = /P(z’) - Gp(z—2)d7. (1)

G denotes the gate, Gp the detector gate and P the illumi-
nation pulse. Here, we directly express the gate as a range
gate, as the range z is proportional to the transit time ¢
via the velocity of light ¢: z = ct/2. Therefore, photons
are filtered according to their path lengths through the
medium: Only photons with path lengths corresponding
to the delay time arrive at the camera while the gate is
open. Mathematically this is expressed by the convolution
of the gate with the product of atmospheric attenuation
and object or medium reflectivity:

S(.T, Y, zdclay) = P(x7 y) / ﬁ(Z)(p(CB, Y, Z) + pscat)G(ZdCIay - Z)dZ,
(2)

where S(z, Y, zaelay) denotes the signal intensity detected
in Pixel (z, y) at a range gate distance zjen.y, P(z, y) is
the transverse illumination profile, () is the attenuation
due to the intermediate medium, p the reflectivity of the
object and pg.at the reflectivity of the medium, which for
simplicity is here assumed to be constant. If the delay time
corresponds to the distance between object and camera,
all ballistic photons originating from the object will be
registered. Most non-ballistic photons or noise photons
are not registered though, due to their different path
lengths through the medium (see Fig. 1a). For a rectangu-
lar gate, the noise contribution from the medium reduces
t0 Pscat Zgate iNStead of pycqe-z for a conventional camera
(see Eq. (2)). We directly see that the smaller the gate
Zgate, the higher the signal-to-noise ratio (SNR).

In order to get the whole scene information, several
images with different delay times need to be recorded.
Apart from an enhanced recording time, this leads to more
data than is strictly necessary (gated images have a lot of
dark pixels, see e.g. Fig. 2).
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Fig. 1. Operation principle: For time-gating, a laser pulse illuminates the scene. After some delay time tqel.y the camera shutter is
opened for a very short time (nanoseconds). Thereby, the ballistic photons of a certain depth are filtered (a). A single-pixel-camera
consists of a photodiode in combination with several (binary) masks (b).

Fig. 2. Examples for image conversion: Original simulated RGB images (top row) and corresponding simulated foggy gated NIR
images with active laser illumination (bottom). The original image size is 512 x 512 pixels (13.3° FOV) whereas the gated images are
downsampled to 64 x 64 pixels. The attenuation length of the fog was set to 13 m, the gate from 40 m to 60 m, the illumination
FWHM to 6.4°, the image blurring to one pixel (gaussian filter) and the background illumination to 1%. RGB images taken from [25].

In a single-pixel-camera, the signal is recorded by a pho- o ‘
todiode, which makes it especially suitable in wavelength Li= Z Mi(z, 4)5(z, ), (3)
ranges away from the visible spectrum, where no low-cost !

cameras exist. The lateral resolution is gained by pixel  where I; is the «th intensity value registered by the photo-
masks in front of the detector (see Fig. 1b): diode and M, represents the i-th pixelmask. Typically, the
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masks are projected onto the photodiode with the help of a
digital mirror device (DMD) [7]. Due to the inherent
sparsity in images [23], the number of masks can be signif-
icantly lower than the number of pixels of the reconstructed
image. Inherent sparsity can most easily be understood if
we consider lossy image compression schemes such as jpeg
[24]. The compression ratio is thereby defined as the
number of masks K over the total number of pixels N:

cr=K/N. (4)

In contrast to conventional image compression methods, we
want to use neural networks to generate the masks of our
single-pixel camera. Thereby, we are not reduced to specific
base functions for our compression, but are able to find the
optimal basis for our dataset. Moreover, we aim to imple-
ment an image-free detection scheme, i.e. we want to
directly extract the object information out of the single-
pixel signal using neural networks.

Combining equations (2) and (3), the time-gated-single-
pixel signal can be expressed as:

Licyy = Y Mi(z,y)P(z,y) / B(2)(p(w, Y, 2) + Pocar)

G(Zdelay - Z)dza (5)
so that we can evaluate the single pixel signal for each
time or range slice Zzgel.y separately. As we now use a
photodiode as a detector, frame rates of several Gigahertz
are feasible. Therefore, the gate can be understood as one
time-frame of the photodiode and we can record the whole
depth information for one pixelmask with one laser pulse.

3 Results and discussion

In the introduction, we mentioned that a low compression
ratio may deliver better preconditions for the real-time data
evaluation for autonomous vehicles in harsh weather
conditions. Therefore, we carried out several simulation
experiments to understand which compression ratio might
be feasible for our specific use case. In a first step, we recon-
structed images out of the single-pixel information in order
to have a reference. As we envision to directly detect objects
within the single-pixel signal to further reduce the compres-
sion ratio, we additionally trained a classification network.

3.1 Determination of feasible compression ratio via
simulations and neural networks

In this section we want to first explain how we simulated an
adequate dataset, then proceed to give details about the
neural networks and finish with their results.

3.1.1 Creation of dataset

We are not aware of any dataset comprising time-gated
images with different delay and gating times in harsh
weather conditions. Therefore, we created our own dataset.
The data was taken from simulated RGB images of the

DENSE dataset [25], for which we employed an algorithm
to simulate gated images with fog in the infrared (IR) wave-
band. For the RGB to IR conversion, we followed Gruber
et al. [3]. There, they create IR images out of RGB images
by weighting the different color channels such that the
visual perception of the new image resembles an image
taken with an IR camera. The weighting factors for the dif-
ferent color channels were determined heuristically, such
that no clear wavelength dependence can be deduced. We
therefore opted to operate our algorithm with their prede-
fined values. The depth data was provided alongside the
images by DENSE, such that gated images for different
delay and gating times could easily be constructed. We
choose a rectangular gating function, which is a good
approximation, as long as we are operating with gating
times much longer than the pulse width and the rise time
of our photodiode. The effect of fog was included by adding
noise terms for the noise photons as well as image blurring
caused by snake photons. As noise terms, we applied shot
noise and Johnson-Nyquist noise. Moreover, the attenua-
tion coefficient f for the signal is calculated following the
Beer-Lambert-Law,

f = exp(=z/2.), (6)

where z, represents the attenuation length of the medium.
Additionally, an active laser illumination light cone
P(z, y) in form of a Gaussian was added and background
illumination included. We chose a field of view of 13.3°
and downsampled all images to 64 x 64 pixels. Moreover,
all datasets were simulated at a range around 50 m with
an attenuation length z, = 13 m, i.e. the objects were
situated around four attenuation lengths deep within
the medium. We show some exemplary simulated images
as well as the original RGB images in Figure 2.

The synthetic DENSE dataset is not labeled. To pro-
duce an adequate dataset for the classification task, we
added objects of different classes. We fixed the classes to
“traffic sign”, “human” and “vehicle”. A total of ten different
object images per class were used, each of these were pasted
with a random size at a random position within our back-
ground gated images (see Fig. 3 for examples). Therefore,
the total number of images amounts to 30 N,,. We created
two different datasets, one with a short range interval of
1 m, which doesn’t exhibit much background and one with
a larger range interval of 15 m and therefore much more
background. All relevant dataset parameters are summed
up in Table 1.

We split all datasets in 94.5% training data, 5% valida-
tion data and 0.5% test data.

3.1.2 Neural network architecture

For the image reconstruction task, we trained an autoen-
coder-type network. An autoencoder (AE) compresses the
data in the encoder part down to a latent vector with size
L followed by a subsequent decompression in the decoder
to reconstruct the original image [26]. We then used the
trained decoder to train our masks such that their single-
pixel intensities are linearly mapped into the latent vector
space of the autoencoder, i.e. that the original images
could be reconstructed from the single-pixel information.
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Fig. 3. Examples from the datasets produced for classification:
One of ten different object images for each of the three classes
“traffic sign”, “human” and “vehicle” were pasted with different
sizes at a random position within the gated images. We produced
two different datasets, one with a gating range of 1 m (left
column) and one with a gating range of 15 m around a distance
of 50 m. The images with the longer gating range exhibit
significantly more background.

Table 1. Simulation parameters for different datasets.
Npg: number of background images. ill. = illumination.

Network type (Nbg) Gate (m) FWHM, (°)
Reconstruction 7403 20 6.4
Classification 2000 1 13.3
Classification 4000 15 12.5

We named this network a single-pixel-decoder (SPD). The
mask number K then equals L. We constructed our net-
works following [8, 26]. A schematic drawing of the network
architecture can be found in Figure 4. To generate the sin-
gle-pixel information, we multiplied the original images
with each pixel mask and calculated the sum over all pixels.
Thereby, we generate K intensity values as sensor output,
one for each mask pattern. As evaluation metric we chose
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Fig. 4. Schematic drawing of the network architecture of the
autoencoder (a) as well as the single-pixel-decoder (b) for 6.25%
compression ratio. For lower compression ratios, a down/up-
convolutional block as well as an encoder block was added. The
encoder/decoder block consists of two convolutional layers with
kernel size 3 and 128 filters each as well as a skip connection. As
activation function we used LeakyRelu. The weights of the
decoder part of the single-pixel-decoder are shared with the
autoencoder network and not retrained. DownConv: Convolu-
tional layer with stride 2, EncBlock/DecBlock: Encoder/
Decoder block, MaxPool: Maximum pooling layer, UpConv:
Convolutional layer followed by a transpose convolutional layer
with stride 2, UpSamp: Upsampling layer.

the structural similarity index measurement (SSIM) [27]
apart from the mean squared error (MSE), which was used
as training loss.

The classification network consisted of two hidden dense
layers. The first has 128 nodes, the second 12. As loss
function we chose the categorical crossentropy loss and as
evaluation metric the accuracy, i.e. the number of correctly
classified images over all test images.
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Fig. 5. Examples of reconstruction: Comparison of ground truth (GT) images with reconstructed (rec) results of the autoencoder
(AE) and single-pixel-decoder (SPD) networks for two different compression ratios cr = 6.25% and c¢r = 1.56%. The first line shows
the reconstructed images, whereas the second line shows the difference image Image,.. — Imageqr. Generally, fine details get neglected
for lower compression ratios. Therefore, only the shapes of objects with fine details like e.g. greenery (see first line) get reconstructed.

Objects with less high frequency components like traffic signs (last two examples) get reconstructed near perfectly even for the lower
compression ratio.
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3.1.3 Reconstruction

We trained our reconstruction networks with two different
compression ratios ¢r = 6.25% and c¢r = 1.6%. Some
exemplary results thereof can be found in Figure 5. The
quantitative results for the test data set, i.e. data unseen
during training, can be found in Figure 6. While the autoen-
coder as well as the single-pixel-decoder expectedly perform
worse with increasing compression, almost all relevant
features stay clearly discernible even with the lower com-
pression ratio of 1.56% which is reflected in the SSIM (see
Fig. 6).

Generally, the lower the compression ratio, the more the
high spatial frequency components get neglected (see differ-
ence images in Fig. 5). This is consistent with CS theory for
natural images [23]. Additionally, the network seems to
focus more on the brighter part of the images. Please note
that the reconstruction of images is not our ultimate goal.
In the end, we envision the machine to detect objects
directly within the single-pixel information. Therefore, the
preservation of relevant features of the object is much more
important for us than a pixel-wise accurate reconstruction
of the image.

3.1.4 Classification

For three object classification with a short gating interval of
1 m, i.e. negligible background (see Fig. 3 left column for
examples), we get a very high accuracy of nearly 100%
down to low compression ratios. Performance reduction
starts below ¢r = 0.5% (see Fig. 7a). Even for ¢r = 0.1%,
which corresponds to only four mask patterns, we can reach
a classification accuracy of over 85%. If we increase the gat-
ing interval such that background objects are not negligible
(see Fig. 3 right column for examples), we see a significant
decrease in the overall classification accuracy for all possible
compression ratios, even cr = 100% (see Fig. 7b).

We attribute the mal-classification observed even for
the non-compressed signal to our construction of the
dataset: The network cannot classify correctly if either
the object is pasted unluckily within the background or
the background itself confuses the network. Generally, we
can observe that the prediction probability, i.e. the proba-
bility with which the network associates an image with a
specific class, is more ambiguous if the image displays a
richer background. One example thereof is given in Figure 8.
While the car is correctly classified for an image with simple
background (Fig. 8¢) with 100% fidelity in the prediction
probability even down to 0.5% compression ratio
(Fig. 8d), the much richer background in Figure 8a confuses
the network even for ¢r = 100% (Fig. 8b). We speculate
that the background in form of a traffic sign (right bottom
corner Fig. 8a) confuses the network for higher compression
ratios whereas for lower compression ratios, the features of
the tree seem to mimic those of a human (see Fig. 8b). The
mal-classification in Figure 8b therefore indicates that our
simple network tends to actually learn general features of
the classes and not specific ones of the ten objects. This
in itself is encouraging but needs further investigation in
form of a more sophisticated classification dataset and net-
work architecture.

x 10°

1
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0. 0.94
0. I 0.92
0 0.9

AE SPD AE SPD
6.25% 6.25% 1.56%  1.56%
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> o
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N

Fig. 6. Quantitative analysis of reconstruction results: The
pixel-wise reconstruction performance — expressed by the MSE —
decreases with decreasing compression ratio as expected. More-
over, the reconstruction ability of the autoencoder (AE) always
outperforms the single-pixel-decoder (SPD). The SSIM on the
other hand only decreases slightly with decreasing compression
ratio, which indicates that the overall structure of the recon-
structed images, i.e. the general shapes of the objects, are
unaltered even for the lower compression of 1.56%.

a) b)
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Test accuracy
Test accuracy

8
6.25 156 0.5 01
Compression ratio (%)

100 6.25 1.56 0.5
Compression ratio (%)

Fig. 7. Quantitative analysis of classification results for short
gate of 1 m (a) and longer gate of 15 m (b) around a range
distance of 50 m. Whereas the test accuracy is nearly 100% for
the short gate down to a compression ratio of 0.5%, it never
exceeds 90% for the longer gate, even if the compression ratio is
set to one. Nevertheless, the test accuracy only starts decreasing
for a compression ratio of 0.5% for the longer gate as well.

3.1.5 Feasible compression ratio

In Table 2, we have summed up the central results from the
simulation study concerning a feasible compression ratio.
There, we depict the lowest tested compression ratio for
which the accuracy for the classification task or the SSIM
for the reconstruction task is higher than 95%. The lowest
compression ratio of 0.5% is reached for the classification
task with a short gating interval. Even for the other tasks
though, the compression ratio is around 1.5%. From the
results of our simulation study we can therefore deduce,
that firstly, for image-free object detection, a short gating
interval should be beneficial and secondly that a compres-
sion ratio of one percent or lower is feasible.

3.2 Determination of system performance

The results of the last section indicate that a very low com-
pression ratio is sufficient to carry out object detection on
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Fig. 8. Two examplary images for one specific vehicle with the
long gating range of 15 m and their corresponding prediction
probabilities for the three classes: One with significant back-
ground (a, b) and one with nearly no background (c, d). For the
former, the fidelity of the prediction is low for all compression
ratios (b), while for the latter the prediction probability is 100%
down to 0.5% compression ratio (d).

the single pixel information. As already discussed in the
introduction, this is crucial to deal with the highly dynamic
environment as well as keep the illumination power within
eye safety constraints. This is near impossible in the visible
or near-infrared waveband, we therefore opt for an operat-
ing wavelength above 1400 nm. The exact value can be
chosen according to the availability of laser sources, for
our system we chose 1550 nm. Due to the dynamic environ-
ment, we believe a frame rate of f;. = 25 Hz or higher is
necessary. In this case, the limiting factor for eye-safety is
the total intensity emitted by the system within 10 s [28]:

J
Hmax < 104 E . (7)

The maximum possible energy per measurement can then
be calculated to be,

Hmax

Emax = 10s 'ffr * Houty

(8)

where A, is the area of the illumination cone once it
leaves the housing. If a non-uniform illumination is cho-
sen, it corresponds to an effective area, for a gaussian
beam Ay, = 2n6°. We can now use equation (5) to calcu-
late the energy arriving on the detector. The object is
assumed to be lambertian and we additionally allow
absorption. We simplify the calculations by assuming a
homogeneous illumination with a fill factor FFy; com-
pared to the FOV of our camera. The energy per pixel
without medium is then distributed via FFy /N with N

Table 2. Central results of the simulation study: For each
network we depict the lowest compression ratio (cr) for
which the metric is higher than 95%. For the reconstruc-
tion the metric is SSIM, for classification it is accuracy
(Acc). In the case of the longer gating interval, we
calculated a weighted accuracy A, by dividing the
accuray of the compressed signal by the accuracy of the
signal with no compression 4, = % For all net-
works, the feasible compression ratio is around 1%.

Task Gate (m) c¢r (%) Metric: value (%)
Reconstruction 20 1.56 SSIM: 97
Classification 1 0.5 Acc: 96
Classification 15 1.56 Acc: 98

the total number of pixels. We further neglect the exact
pulse form and assume the gate to be small enough that
the signal from the object is much higher than the one
backscattered from the medium (see introduction). Then
the minimal number of photons which must arrive
on the detector in order to be registered must be higher
than the noise level of the photodiode:

Al FFin ,
ZzyMl(x’ y) : EmaxE E : T P (33, y) exp(—2z/za)
A QE > NEP/% - (9)
27122 gt pe”

Here, p' is the pixelwise reflection coefficient considering
only absorption as the lambertian nature is expressed via
A where Ay, is the aperture size of the detector system.

21227
QE is the quantum efficiency of the detector and NEP
the noise equivalent power of the photodiode.

Let us proceed with an example. According to the sim-
ulations in Section 3.1, we set the number of pixels N to 64
and the compression ratio to one percent which corresponds
to K = 41 masks. This directly fixes the pulse repetition rate
t0 frep rate = for K = 1025 Hz. The gating time is set to
6.7 ns which corresponds to a gate of 1 m (see classification
network in Sect. 3.1) and therefore an operating frequency
of 1.5-10% Hz. The datacube for a range up to 100 m would
then be 41 x 100. As an exemplary photodiode we chose the
Hamamatsu 66854-01 [29] with a 2 GHz bandwidth, a NEP
of 210" W/\/Hz and a QE of 95%. We set the diameters
of the apertures d,,; and d;, to 50 mm and z = 100 m. Then
we get:

ZMM”(:E’ y) - FFy - p'(z,y) exp(=200m/z,) > 1.18 - 107°.
(10)

Let us consider for the moment only one illuminated pixel
with no absorption and a fill factor of 0.8. Then our system
would be able to detect such an object down to 5.6 attenua-
tion lengths. This is comparable to time-gated systems which
have been reported to perform down to approximately six
attenuation lengths in fog and smoke [17, 30, 31]. If the
object is absorptive, the optical thickness of the medium
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needs to decrease accordingly, e.g. for p’ = 0.1 we only get 4.4
attenuation lengths. On the positive side, we took a rather
pessimistic view in our calculations: Normally, objects will
be much larger than one pixel. Moreover, many materials
in traffic are either retroreflective or exhibit a strong
backscatter peak, such that the lambertian model does not
hold for them. If we want to get more sensitive, we have some
degree of freedom in enlarging the output area of the illumi-
nation as well as the aperture area of the detection system.
One very interesting operation mode would be to record all
masks simultaneously instead of sequentially. Instead of
using a DMD, the masks could then also be hard coded in
front of the individual photodiodes. On the one hand, a large
input aperture is then easily realised as the net aperture is
K-A;,.. Indeed, instead of increasing the repetition rate, the
mask number K then increases the overall sensor area (see
also Eq. (9)). On the other hand, we record a true static
image. For the frame rate of 25 Hz and a velocity of 100
km /h, objects move over 1 m during one single frame. Obvi-
ously, the parallel measurement mode comes at the cost of a
more complex calibration routine, as the viewing angles of
the different masks will be slightly different.

In our noise calculation, we have estimated the noise
floor with the NEP, the true noise floor might be slightly
higher due to additional electronics and the rather high
operation frame rate. Moreover, we most certainly have
got background illumination in the scene. We have not
included it in our analysis as we believe it to be small, if a
narrowband wavelength filter is used in front of the photo-
diode. Even if the sun directly shines within our sensor, sun
light in the short-wave-infrared (SWIR) region is compara-
ble to our active illumination (0.62 W/m?/nm for reference
air mass 1.5 spectrum [32]). In heavy obscuring media, also
sun light will be heavily attenuated and additionally rather
homogeneously distributed such that we ideally only have
to deal with a small constant background. One possiblity
to reduce background noise is the use of complementary
mask patterns [33]. This doubles the masks number but
can easily be implemented by measuring boths arms of
the DMD in parallel [34]. Another issue with coherent illu-
mination might be speckle noise. We have not considered it
in our analysis, as we believe to have enough design freedom
in the layout of the detector to decrease the speckle size to
below one mask pixel. Moreover, there exist exciting new
illumination strategies which not only promise a homoge-
neous (and even quadratic) illumination profile but also sig-
nificant speckle noise reduction [35, 36].

In a next step, we plan to implement first a time-gated
camera on a vehicle to validate our simulated data with real
data. Moreover, we want to implement direct object detec-
tion on the single-pixel information, which we are currently
working on in another project. Then, all relevant parame-
ters for the time-gated-single-pixel-camera can be fixed
and such a sensor system tested.

4 Conclusion

We have introduced the concept of a time-gated-single-
pixel-camera as a promising sensor to tackle robust object

detection in bad weather conditions for autonomous vehi-
cles. Simulations of the concept in combination with neural
networks show good performance. In particular, they prove
that as few as 41 masks could suffice. In this case, the masks
can either be hard-coded in front of several photodiodes or
projected onto them with a single digital mirror device. Due
to the live read-out of the photodiodes, a true single-shot
detection of the whole scene would then be possible.
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